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Abstract. In this paper we prove a Brunn-Minkowski type inequal-
ity for the polar set of the p-sum of convex bodies, which generalizes
previous results by Firey, and we show it has an equivalent multiplica-
tive version. We also make some considerations for the polar set of the
so-called difference body.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the n-
dimensional Euclidean space Rn, and let 〈·, ·〉 be the standard inner product
in Rn. The subset of Kn consisting of all convex bodies containing the origin
as an interior point is denoted by Kn

0 , and we write Bn for the n-dimensional
Euclidean unit ball. The n-dimensional volume of a measurable set M ⊂ Rn,
i.e., its n-dimensional Lebesgue measure, is denoted by vol(M) (or voln(M)
if the distinction of the dimension is needed) and with int M and conv M we
represent its interior and convex hull, respectively. In particular, we write
κn = vol(Bn). Finally, the set of all k-dimensional (linear) planes of Rn is
denoted by Ln

k , and for H ∈ Ln
k , K ∈ Kn, the orthogonal projection of K

onto H is denoted by K|H.
Relating the volume with the Minkowski (vectorial) addition of convex

bodies, one is led to the famous Brunn-Minkowski inequality. One form of
it states that if K, L ∈ Kn and 0 ≤ λ ≤ 1, then

vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n.

Equality for some λ ∈ (0, 1) holds if and only if K and L either lie in parallel
hyperplanes or are homothetic.

Brunn-Minkowski inequality has a more general version for the so-called
quermassintegrals of convex bodies, which are the coefficients (up to a con-
stant) of the polynomial expression which is obtained when computing the
volume of the Minkowski addition K + λBn, λ ≥ 0, namely,

vol(K + λBn) =
n∑

i=0

(
n

i

)
Wi(K)λi.
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It is known as the Steiner formula of K (see [13]). Quermassintegrals are
a very special case of the more general defined mixed volumes for which we
refer to [12, s. 5.1]; in particular, W0(K) = vol(K) and Wn(K) = κn. Thus,
Brunn-Minkowski theorem for quermassintegrals states that if K, L ∈ Kn

and 0 ≤ λ ≤ 1, then, for all i = 0, . . . , n− 2,

Wi

(
(1− λ)K + λL

)1/(n−i) ≥ (1− λ)Wi(K)1/(n−i) + λWi(L)1/(n−i),

whereas Wn−1

(
(1 − λ)K + λL

)
= (1 − λ)Wn−1(K) + λWn−1(L); in fact,

there exists the most general version of Brunn-Minkowski inequality for
mixed volumes (see [12, Theorem 7.4.5]).

Brunn-Minkowski inequality is one of the most powerful results in Convex
Geometry and beyond. For extensive and beautiful surveys on it we refer e.g.
to [1, 5]. Among many others, it has been the key for the development of the
so-called Lp-Brunn-Minkowski theory (see e.g. [8, 9]), which had its starting
point in several works by Firey (see [2, 3, 4]). More precisely, in [4] Firey
introduced the following generalization of the classical Minkowski addition
(and scalar multiplication), which is usually called p- or Firey addition/linear
combination: for 1 ≤ p ≤ ∞ fixed, K, L ∈ Kn

0 and λ, µ ≥ 0, there exists a
(unique) convex body λ ·K +p µ · L for which the support function

(1.1) h(λ ·K +p µ · L, ·)p = λh(K, ·)p + µh(L, ·)p.

We recall that h(K, u) = max
{
〈x, u〉 : x ∈ K

}
, u ∈ Sn−1, where, as usual,

Sn−1 denotes the (n−1)-dimensional unit sphere of Rn (see e.g. [12, s. 1.7]).
We observe that λ ·K = λ1/pK, i.e., the Firey scalar multiplication depends
on p, and thus, if the distinction of the parameter p is needed, we will write
‘·p’ instead of ‘·’.

Clearly, when p = 1, formula (1.1) defines the classical Minkowski addition
and scalar multiplication λK + µL, whereas the case p = ∞ gives

λ ·K +∞ µ · L = conv(K ∪ L).

Moreover, in [4, Theorem 1] it is shown that, for all 1 ≤ p ≤ q,

(1.2) (1− λ) ·p K +p λ ·p L ⊂ (1− λ) ·q K +q λ ·q L,

λ ∈ [0, 1]. Firey also proved the extended Brunn-Minkowski inequality

Wi

(
(1− λ) ·K +p λ · L

)p/(n−i) ≥ (1− λ)Wi(K)p/(n−i) + λWi(L)p/(n−i)

and, moreover, he obtained several Brunn-Minkowski type inequalities for
polar bodies. We recall that the polar K∗ of a convex body K ∈ Kn

0 is
defined as

K∗ =
{
x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K

}
.

In [3], Firey showed that
(1.3)

Wi

([
(1−λ)K +λL

]∗)−1/(n−i)
≥ (1−λ)Wi(K∗)−1/(n−i) +λWi(L∗)−1/(n−i),

with equality, for some λ ∈ (0, 1), if and only if K and L are dilatates.
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In this work we are mainly interested in studying generalizations of the
previous relation. Thus, we extend this Brunn-Minkowski type inequality to
the p-sum of convex bodies, i.e., in Section 2 we prove the following result:

Theorem 1.1. Let K, L ∈ Kn
0 and 1 ≤ p ≤ ∞. Then, for all i = 0, . . . , n−1

and λ ∈ [0, 1],
(1.4)

Wi

([
(1−λ)·K+pλ·L

]∗)−p/(n−i)
≥ (1−λ)Wi(K∗)−p/(n−i)+λWi(L∗)−p/(n−i).

If p 6= ∞, equality holds, for some λ ∈ (0, 1), if and only if K and L are
dilatates. For p = ∞, equality holds if and only if K ⊂ L or L ⊂ K.

The volume case (i = 0) was already obtained by Firey in [2].
Moreover, using standard arguments, we see that (1.4) has an equivalent

multiplicative version:

Theorem 1.2. Let K, L ∈ Kn
0 and 1 ≤ p ≤ ∞. Then, for all i = 0, . . . , n−1

and λ ∈ [0, 1],

(1.5) Wi

([
(1− λ) ·K +p λ · L

]∗) ≤ Wi(K∗)1−λWi(L∗)λ.

Equality holds, for some λ ∈ (0, 1), if and only if K = L.

In Section 3 we show this theorem as well as the mentioned equivalence,
which provides an alternative proof to the one given by Firey in [3] for
inequality (1.3). This would also allow to show Theorem 1.1 independently
of Firey’s result.

Finally, in Section 4 some considerations for the polar set of the so-called
difference body K − K = K + (−K) are made. Indeed, as an immedi-
ate consequence of (1.4), the inequality vol

(
(K −K)∗

)
≤ (1/2n)vol(K∗) is

obtained, and so it is a natural question whether there exists a constant
c(n) > 0, depending only on the dimension, bounding from below the ratio
vol

(
(K − K)∗

)
/vol(K∗). We prove that such an inequality does not exist,

which leads to consider other possibilities in order to get such an inequality.

2. A Brunn-Minkowski inequality for the polar set of the
p-sum of convex bodies

In order to show Theorem 1.1 a weaker version of inequality (1.3) will be
needed, namely: writing (1.3) as

Wi

([
(1− λ)K + λL

]∗)1/(n−i)
≤ 1

(1− λ)Wi(K∗)−1/(n−i) + λWi(L∗)−1/(n−i)

and using the convexity of the function f(x) = 1/x when x > 0, we imme-
diately get that for K, L ∈ Kn

0 and λ ∈ [0, 1],
(2.1)

Wi

([
(1− λ)K + λL

]∗)1/(n−i)
≤ (1− λ)Wi(K∗)1/(n−i) + λWi(L∗)1/(n−i),

i = 0, . . . , n− 1.
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Proof of Theorem 1.1. First we assume p < ∞, and in the following we also
suppose p 6= 1, because the case p = 1 is Firey’s result (1.3).

Let i ∈ {0, . . . , n − 1} be fixed. We notice that 0 ∈ intK∗, intL∗, and
therefore Wi(K∗),Wi(L∗) 6= 0. Thus, we can take λ1 = Wi(K∗)−1/(n−i) and
λ2 = Wi(L∗)−1/(n−i), and consider the convex bodies K = (1/λ1)K, L =
(1/λ2)L ∈ Kn

0 . Finally, let

λ̄ =
λλp

2

(1− λ)λp
1 + λλp

2

=
λWi(K∗)p/(n−i)

(1− λ)Wi(L∗)p/(n−i) + λWi(K∗)p/(n−i)
.

Then, for all u ∈ Sn−1 we have

h
(
(1− λ̄) ·K +p λ̄ · L, u

)p = (1− λ̄)h(K,u)p + λ̄h(L, u)p

=
(1− λ)λp

1h(K,u)p + λλp
2h(L, u)p

(1− λ)λp
1 + λλp

2

=
(1− λ)h(K, u)p + λh(L, u)p

(1− λ)λp
1 + λλp

2

=
1

(1− λ)λp
1 + λλp

2

h
(
(1− λ) ·K +p λ · L, u

)p
,

which implies that

(1− λ̄) ·K +p λ̄ · L =
1(

(1− λ)λp
1 + λλp

2

)1/p

[
(1− λ) ·K +p λ · L

]
,

and since (1− λ̄)K + λ̄L ⊂ (1− λ̄) ·K +p λ̄ ·L (see (1.2)) and polarity inverts
inclusions, we obtain that(

(1− λ)λp
1 + λλp

2

)1/p [
(1− λ) ·K +p λ · L

]∗ ⊂ [
(1− λ̄)K + λ̄L

]∗
.

Therefore, applying (2.1), we get(
(1− λ)λp

1 + λλp
2

)1/pWi

([
(1− λ) ·K +p λ · L

]∗)1/(n−i)

≤ Wi

([
(1− λ̄)K + λ̄L

]∗)1/(n−i)

≤ (1− λ̄)Wi(K
∗)1/(n−i) + λ̄Wi(L

∗)1/(n−i).

Moreover, we observe that

Wi

(
K
∗)1/(n−i) = Wi(λ1K

∗)1/(n−i) = 1,

and analogously Wi(L
∗)1/(n−i) = 1, and hence we can conclude that(

(1− λ)λp
1 + λλp

2

)1/pWi

([
(1− λ) ·K +p λ · L

]∗)1/(n−i)
≤ 1,

which yields (1.4).
Next we deal with the equality case. If K = cL, c > 0, then equality

trivially holds in (1.4). Conversely, if we have equality in (1.4), then, in
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particular, (1− λ̄)K + λ̄L = (1− λ̄) ·K +p λ̄ · L holds, i.e., we get that[
(1− λ̄)h(K,u) + λ̄h(L, u)

]p = (1− λ̄)h(K,u)p + λ̄h(L, u)p

for every u ∈ Sn−1. This yields h(K,u) = h(L, u) for all u ∈ Sn−1, which
implies K = L. Therefore, K = (λ1/λ2)L, as required.

The case p = ∞ is easy: taking limits when p →∞, inequality (1.4) takes
the form

Wi

([
conv(K ∪ L)

]∗)−1/(n−i)
≥ max

{
Wi(K∗)−1/(n−i),Wi(L∗)−1/(n−i)

}
,

or, equivalently,

(2.2) Wi

([
conv(K ∪ L)

]∗) ≤ min
{
Wi(K∗),Wi(L∗)

}
,

which is trivially true because both K, L ⊂ conv(K∪L) and hence K∗, L∗ ⊃[
conv(K ∪ L)

]∗.
Moreover, equality holds if and only if either K ⊂ L or L ⊂ K: indeed, if

K ⊂ L or vice versa, equality in (2.2) holds obviously; conversely, assuming,
for instance, that min

{
Wi(K∗),Wi(L∗)

}
= Wi(K∗), if

Wi

([
conv(K ∪ L)

]∗) = Wi(K∗),

then conv(K ∪ L) = K and hence, L ⊂ K. �

3. An equivalent multiplicative Brunn-Minkowski inequality
for polar sets

In order to prove Theorem 1.2 we need a formula expressing the volume
of the polar set of a convex body in terms of its support function (defined
in Rn), see e.g. [12, (1.54)]:

(3.1) vol(K∗) =
1
n!

∫
Rn

e−h(K,x)dx

for any K ∈ Kn
0 .

Proof of Theorem 1.2. First we consider the case p = 1, and prove (1.5) for
i = 0, i.e., the case of the volume, which is just a consequence of (3.1), the
additivity of the support function (see e.g. [7, Proposition 6.2]) and Hölder’s
inequality (see e.g. [7, Corollary 1.5]) for p = 1/(1− λ) and q = 1/λ:

vol
([

(1− λ)K + λL
]∗) =

1
n!

∫
Rn

e−h
(
(1−λ)K+λL,x

)
dx

=
1
n!

∫
Rn

(
e−h(K,x)

)1−λ (
e−h(L,x)

)λ
dx

≤
(

1
n!

∫
Rn

e−h(K,x) dx

)1−λ (
1
n!

∫
Rn

e−h(L,x) dx

)λ

= vol(K∗)1−λvol(L∗)λ.
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Next we deal with a general i-th quermassintegral. Kubota’s integral recur-
sion formula (see e.g. [12, p. 301, (5.72)]) states in particular that, for any
convex body K ∈ Kn and all i = 1, . . . , n− 1,

Wn−i(K) =
κn

κi

∫
Ln

i

voli(K|H) dµ(H);

here µ is the (rotationally invariant) Haar measure on Ln
i with µ(Ln

i ) = 1.
Using the polarity link between sections and projections (see e.g. [6, p. 22])
and since (

(1− λ)K + λL
)
∩H ⊃ (1− λ)(K ∩H) + λ(L ∩H),

we get that(
(1−λ)K+λL

)∗|H =
[(

(1−λ)K+λL
)
∩H

]∗
⊂

[
(1−λ)(K∩H)+λ(L∩H)

]∗
,

where the polar operation on the middle/right is taken in H. This, together
with the volume case and Hölder’s inequality, yields

Wn−i

([
(1− λ)K + λL

]∗) =
κn

κi

∫
Ln

i

voli
((

(1− λ)K + λL
)∗|H)

dµ(H)

≤ κn

κi

∫
Ln

i

voli
([

(1− λ)(K ∩H) + λ(L ∩H)
]∗) dµ(H)

≤ κn

κi

∫
Ln

i

voli
(
(K ∩H)∗

)1−λvoli
(
(L ∩H)∗

)λ dµ(H)

=
κn

κi

∫
Ln

i

voli(K∗|H)1−λvoli(L∗|H)λ dµ(H)

≤

[
κn

κi

∫
Ln

i

voli(K∗|H) dµ(H)

]1−λ [
κn

κi

∫
Ln

i

voli(L∗|H) dµ(H)

]λ

= Wn−i(K∗)1−λWn−i(L∗)λ.

Next, we deal with the characterization of the equality in (1.5), and first,
we consider the inequality for the volume. By the equality case in Hölder’s
inequality and the continuity of the support function, we have that there
exists a constant c > 0 such that e−h(K,x) = c e−h(L,x) for all x ∈ Rn. In
particular, if x = 0, we obtain that c = 1 and hence that h(K, x) = h(L, x)
for all x ∈ Rn. Therefore, K = L.

This fact allows to characterize the equality case in (1.5) for p = 1, since it
implies that equality in the last but one inequality above gives K∩H = L∩H
µ-almost everywhere, and thus K = L. The converse is trivially fulfilled.

Finally, using (1.2), we get the required inequality (1.5) for all p ≥ 1. �

We conclude the section proving that both versions of the polar Lp-Brunn-
Minkowski inequality are equivalent.

Proposition 3.1. Inequalities (1.4) and (1.5) are equivalent.
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Proof. First we observe that (1.5) is an easy consequence of (1.4) and the
arithmetic-geometric mean inequality (see e.g. [7, Corollary 1.2]). Indeed,

Wi

([
(1− λ) ·K+pλ · L

]∗)p/(n−i)

≤ 1
(1− λ)Wi(K∗)−p/(n−i) + λWi(L∗)−p/(n−i)

≤ 1(
Wi(K∗)−p/(n−i)

)1−λ (
Wi(L∗)−p/(n−i)

)λ

=
1[

Wi(K∗)1−λWi(L∗)λ
]−p/(n−i)

,

which yields Wi

([
(1− λ) ·K +p λ · L

]∗) ≤ Wi(K∗)1−λWi(L∗)λ.

Conversely, we assume (1.5) and consider the sets K = Wi(K∗)1/(n−i)K,
L = Wi(L∗)1/(n−i)L and the positive number

λ̄ =
λWi(L∗)−p/(n−i)

(1− λ)Wi(K∗)−p/(n−i) + λWi(L∗)−p/(n−i)
.

Then it is easy to check that (see proof of Theorem 1.1)

(1− λ̄) ·K +p λ̄ · L =
(1− λ) ·K +p λ · L[

(1− λ)Wi(K∗)−p/(n−i) + λWi(L∗)−p/(n−i)
]1/p

,

and since Wi

(
K
∗) = Wi

(
L
∗) = 1, applying the multiplicative inequality

(1.5) to K,L and λ̄, we get

1 = Wi

(
K
∗)1−λ̄Wi

(
L
∗)λ̄ ≥ Wi

([
(1− λ̄) ·K +p λ̄ · L

]∗)
=

(
(1− λ)Wi(K∗)−p/(n−i) + λWi(L∗)−p/(n−i)

)(n−i)/p

Wi

([
(1− λ) ·K +p λ · L

]∗)
.

It shows (1.4) and concludes the proof of the equivalence. �

4. On the polar set of the difference body

We observe that the definition of p-sum (1.1) yields

λ ·K +p λ · L = λ1/p(K +p L)

for any λ > 0. Therefore, from (1.4) when i = 0 and λ = 1/2, it is immedi-
ately obtained that for any K ∈ Kn

0 ,

vol
([

K +p (−K)
]∗) ≤ 1

2n/p
vol(K∗);
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in particular, if p = 1, the following inequality is obtained for the polar set
of the difference body K + (−K) = K −K:

vol
(
[K −K]∗

)
≤ 1

2n
vol(K∗).

Taking a look at the famous Rogers-Shephard inequality (see [10]), namely,

2nvol(K) ≤ vol(K −K) ≤
(

2n

n

)
vol(K),

it is at this point a natural question whether it is possible to bound from
below the ratio vol

(
[K − K]∗

)
/vol(K∗) by a constant c(n) > 0 depending

only on the dimension, not on the convex body. Unfortunately, the answer
to this question is negative, as the following counterexample shows. Let

K = conv
{(

−1
ε
, 0

)
,

(
1

1− ε
, 0

)
, (0,−2), (0, 2)

}
∈ R2,

where 0 < ε < 1. Clearly K∗ = [−ε, 1−ε]×[−1/2, 1/2] and thus vol(K∗) = 1.
On the other hand, since

conv
{(

− 1
(1− ε)ε

, 0
)

,

(
1

(1− ε)ε
, 0

)
, (0,−4), (0, 4)

}
⊂ K −K,

we have

ε ≥ (1− ε)ε = vol
([
−(1− ε)ε, (1− ε)ε

]
×

[
−1

4
,
1
4

])
= vol

([
conv

{
±

(
1

(1− ε)ε
, 0

)
,±(0, 4)

}]∗)
≥ vol

(
[K −K]∗

)
for all 0 < ε < 1, which shows that there exists no constant c(n) > 0 such
that vol

(
[K −K]∗

)
≥ c(n) = c(n)vol(K∗).

Furthermore, we would like also to point out that a relation of the type∫ 1

0
vol

([
(1− λ)K + λ(−K)

]∗) dλ ≥ c(n)vol(K∗),

c(n) > 0, cannot be obtained. This would be the natural counterpart to the
inequality ∫ 1

0
vol

(
(1− λ)K + λ(−K)

)
dλ ≤ 2n

n + 1
vol(K)

proven by Rogers&Shephard in [11].
Indeed, using the above considered convex body K, now with 0 < ε < 1/2,

we have that[
(1− λ)K + λ(−K)

]∗
⊂

[
conv

{(
λ(1− 2ε)− 1 + ε

(1− ε)ε
, 0

)
,

(
λ(1− 2ε) + ε

(1− ε)ε
, 0

)
,±(0, 2)

}]∗
=

[
(1− ε)ε

λ(1− 2ε)− 1 + ε
,

(1− ε)ε
λ(1− 2ε) + ε

]
×

[
−1

2
,
1
2

]
,
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and thus∫ 1

0
vol

([
(1− λ)K + λ(−K)

]∗) dλ

≤
∫ 1

0
vol

([
(1− ε)ε

λ(1− 2ε)− 1 + ε
,

(1− ε)ε
λ(1− 2ε) + ε

]
×

[
−1

2
,
1
2

])
dλ

=
2(1− ε)ε
1− 2ε

log
(

1− ε

ε

)
for all 0 < ε < 1/2. Thus, since

lim
ε→0

2(1− ε)ε
1− 2ε

log
(

1− ε

ε

)
= 0,

we get that there exists no constant c(n) > 0 verifying∫ 1

0
vol

([
(1− λ)K + λ(−K)

]∗) dλ ≥ c(n) = c(n)vol(K∗).

Finally, we would like to observe that analogous (counter)examples can
be also constructed for any dimension n ≥ 2.

4.1. Possible reverse inequalities. Since it is not possible to get an in-
equality of the type vol

(
[K −K]∗

)
≥ c(n)vol(K∗) with c(n) > 0 a constant

depending only on the dimension, either additional assumptions should be
imposed in order to get such a relation or a different operation has to be
considered. In this respect, one possibility would be to consider the inter-
section of sets. Thus, for K, L ∈ Kn

0 and all λ ∈ [0, 1], since K ∩ L ⊂ K, L
we immediately get that vol

(
[K ∩ L]∗

)
≥ vol(K∗), vol(L∗), and hence,

(4.1) vol
(
[K ∩ L]∗

)
≥ vol(K∗)1−λvol(L∗)λ,

with equality if and only if K = L. In particular,

(4.2) vol
([

K ∩ (−K)
]∗) ≥ vol(K∗),

and equality holds if and only if K is 0-symmetric.
At this point we would like to make the following observation. The volume

Brunn-Minkowski inequality for the polar set of the sum (see the proof of
Theorem 1.2) was obtained via Hölder’s inequality. An estimate in the
opposite direction is given by the famous Prékopa-Leindler inequality (see
e.g. [12, Theorem 7.1.2]), which states that for λ ∈ (0, 1) fixed and f, g, h :
Rn −→ R nonnegative measurable functions such that

(4.3) h
(
(1− λ)x + λy

)
≥ f(x)1−λg(y)λ

for any x, y ∈ Rn, then

(4.4)
∫

Rn

h ≥
(∫

Rn

f

)1−λ (∫
Rn

g

)λ

.
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Then it is easy to check that the volume bound (4.1) for the ‘intersection
operation’ is also naturally obtained via the Prékopa-Leindler inequality.
Indeed, for x ∈ Rn, since

(4.5) h(K ∩ L, x) = inf
(1−λ)x1+λx2=x

(
(1− λ)h(K, x1) + λh(L, x2)

)
(see e.g. [12, p. 59]), then

e−h(K∩L,x) ≥
(
e−h(K,x1)

)1−λ (
e−h(L,x2)

)λ
,

and by (3.1) and (4.4) we get

vol(K∗)1−λvol(L∗)λ =
(

1
n!

∫
Rn

e−h(K,x)dx

)1−λ (
1
n!

∫
Rn

e−h(L,x)dx

)λ

≤ 1
n!

∫
Rn

e−h(K∩L,x)dx = vol
(
[K ∩ L]∗

)
.

Moreover, since e−h(K∩L,·) is the ‘smallest’ function satisfying condition (4.3)
(cf. (4.5)), the above argument shows that inequality (4.1) is the best in-
equality that can be obtained via a ‘Prékopa-Leindler approach’.

Having the definition of p-sum (1.1) in mind, and in view of (4.5), one
might think of a kind of generalization of the ‘intersection operation’: for
K, L ∈ Kn

0 and p ≥ 1, there is a (unique) convex body K ∩p L ∈ Kn
0 whose

support function is given by

(4.6) h(K ∩p L, u) = inf
u1+u2=u

(
h(K, u1)p + h(L, u2)p

)1/p
.

It is easy to check that the right-hand side in the above identity defines a
sublinear function, and hence K ∩p L is well-defined. Clearly, when p = 1
the intersection is obtained.

The following result shows that this new operation also allows to bound
from below the ratio vol

([
K ∩p (−K)

]∗)
/vol(K∗) in contrast to the case of

the Minkowski/Firey addition.

Proposition 4.1. Let K ∈ Kn
0 and 1 ≤ p ≤ ∞. Then

(4.7) vol
([

K ∩p (−K)
]∗) ≥ vol(K∗),

and equality holds if and only if K is 0-symmetric and p = 1.

Proof. Clearly,

h
(
K ∩p (−K), u

)
≤ inf

u1+u2=u

(
h(K, u1) + h(−K, u2)

)
= h

(
K ∩ (−K), u

)
,

i.e., K ∩p (−K) ⊂ K ∩ (−K) and then, using polarity and applying (4.2) we
get vol

(
[K ∩p (−K)]∗

)
≥ vol

(
[K ∩ (−K)]∗

)
≥ vol(K∗).

If K is 0-symmetric and p = 1 then equality holds in (4.7). Conversely, if
we have equality in (4.7) then, in particular, K ∩p (−K) = K ∩ (−K) and
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vol
(
[K ∩ (−K)]∗

)
= vol(K∗). The latter implies K = −K (cf. (4.2)) and

thus we get K ∩p K = K. Therefore, for any u ∈ Rn,

h(K, u) ≤
(
h(K, u1)p + h(K, u2)p

)1/p

for all u1, u2 with u1 + u2 = u, and then, in particular, we have

h(K, u) ≤ 21/p−1h(K, u),

which is true, for u 6= 0, only if p = 1. �
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